Moduli Spaces, Geodesics, and Flops

FABIAN RUEHLE (NORTHEASTERN UNIVERSITY & IAIFI)

String Pheno 2022 07/04/2022

Based on

[Brodie, Constantin, Lukas, FR: 2112.12106]

[Brodie, Constantin, Lukas, FR: 2108.10323]

[Brodie, Constantin, Lukas, FR: 2104.03325]

[Ashmore, FR: 2103.07472]

Motivation

Swampland Distance Conjecture: [Ooguri, Vafa `06]

Compare a string theory compactified on a CY X at a point p_1 in its moduli space with the theory at a point p_0 . Denote the (geodesic) moduli space distance by d.

Then, the theory at p_1 has an infinite number of light particles, with mass starting at the order $m \sim e^{-\alpha d}$ with $\alpha = \mathcal{O}(1)$ in Planck units.

Outline

- Structure of moduli spaces
- Massive towers and the Swampland Distance Conjecture
- The Kawamata-Morrison and the Swampland Distance Conjecture
- Conclusions

Structure of Moduli Spaces

The CS moduli space

Metric for 1-parameter quintic

$$z_0^5 + z_1^5 + z_2^5 + z_3^5 + z_4^5 - 5\psi z_0 z_1 z_2 z_3 z_4 = 0$$

- ► Degenerations classified via LMHS [Grimm,Li,Palti `18; Grimm,Palti,Valenzuela `18; Blumenhagen,Kläwer, Schlechter `18; Grimm,FR,van de Heisteeg `19; Joshi,Klemm `19]
- Can be computed from the periods hypergeometric Picard-Fuchs system)

[Candelas, De La Ossa, Green, Parkes `91]

Solve geodesic equation

$$\ddot{\gamma}(\tau) + \Gamma^c_{ab}\dot{\gamma}^a(\tau)\dot{\gamma}^b(\tau) = 0$$

Compute geodesic distances

$$d(p_1, p_2) = \int_{\tau_1}^{\tau_2} d\tau \sqrt{g_{a\bar{b}}(\gamma(\tau))\dot{\gamma}^a(\tau)\dot{\gamma}^b(\tau)}$$

Kähler cone = cone of Kähler forms. All volumes are > 0

$$\operatorname{vol}(CY) = \int_X J^3 = \kappa_{ijk} t^i t^j t^k \text{,} \quad \operatorname{vol}(D_a) = \int_X J^2 D_a = \kappa_{ija} t^i t^j \text{,} \quad \operatorname{vol}(C_{ab}) = \int_X J D_a D_b = \kappa_{iab} t^i$$

Kähler cone = cone of Kähler forms. All volumes are > 0

$$\operatorname{vol}(CY) = \int_X J^3 = \kappa_{ijk} t^i t^j t^k \text{,} \quad \operatorname{vol}(D_a) = \int_X J^2 D_a = \kappa_{ija} t^i t^j \text{,} \quad \operatorname{vol}(C_{ab}) = \int_X J D_a D_b = \kappa_{iab} t^i$$

 \blacktriangleright At the wall of the KC, some volumes \rightarrow 0: "primitive contractions"

Flop wall:

Curve collapses to a point

$$\operatorname{vol}(C) \to 0$$

$$\operatorname{vol}(D), \operatorname{vol}(X) > 0$$

Kähler cone = cone of Kähler forms. All volumes are > 0

$$\operatorname{vol}(CY) = \int_X J^3 = \kappa_{ijk} t^i t^j t^k \text{,} \quad \operatorname{vol}(D_a) = \int_X J^2 D_a = \kappa_{ija} t^i t^j \text{,} \quad \operatorname{vol}(C_{ab}) = \int_X J D_a D_b = \kappa_{iab} t^i$$

 \blacktriangleright At the wall of the KC, some volumes \rightarrow 0: "primitive contractions"

Flop wall:

Curve collapses to a point

$$\operatorname{vol}(C) \to 0$$

 $\operatorname{vol}(D), \operatorname{vol}(X) > 0$

Zariski wall (a):

Divisor collapses to a curve, in general unclear how to go beyond

$$vol(D) \to 0, vol(X) > 0$$

Zariski wall (b):

Divisor collapses to a point, unclear how to go beyond

$$vol(D) \to 0, vol(X) > 0$$

Kähler cone = cone of Kähler forms. All volumes are > 0

$$\operatorname{vol}(CY) = \int_X J^3 = \kappa_{ijk} t^i t^j t^k \text{,} \quad \operatorname{vol}(D_a) = \int_X J^2 D_a = \kappa_{ija} t^i t^j \text{,} \quad \operatorname{vol}(C_{ab}) = \int_X J D_a D_b = \kappa_{iab} t^i$$

• At the wall of the KC, some volumes \rightarrow 0: "primitive contractions"

Flop wall:

Curve collapses to a point

$$\operatorname{vol}(C) \to 0$$

 $\operatorname{vol}(D), \operatorname{vol}(X) > 0$

Zariski wall (a):

Divisor collapses to a curve, in general unclear how to go beyond

$$vol(D) \to 0, vol(X) > 0$$

Zariski wall (b):

Divisor collapses to a point, unclear how to go beyond

$$vol(D) \to 0, vol(X) > 0$$

Effective cone wall:

CY collapses, KC ends

$$vol(X) \to 0$$

Massive Towers and the SDC

Compute massive KK states (schematically)

- Starting point: 10D KG equation $\ \Delta_{10D} \ \Phi_{10D} = 0 \ \Delta_{10D} \sim g^{MN} \partial_M \partial_N$
- Now decompose

$$\Delta_{10D} = (\Delta_{4D}; \Box_{6D})$$
 $\Phi_{10D} = (\phi_{4D}; \varphi_{6D})$ $g^{MN} = (g^{\mu\nu}; g^{ab})$

Use 6D eigenfunctions of d'Alembertian

$$\Box_{6D}\varphi_{6D} = \lambda\varphi_{6D} \qquad \Box = d\delta + \delta d = \sqrt{\det(g)}^{-1}\partial_a\sqrt{\det(g)}g^{ab}\partial_b$$

- Get 4D KG equation $(\Delta_{4D} + \lambda)\phi_{4D} = 0$ $m^2 \sim \lambda$
- Can compute CY metric using machine learning [see Andre's talk]

[Ashmore,He,Ovrut `19; Anderson,Gerdes,Gray,Krippendorf,Raghuram,FR `20; Douglas,Lakshminarasimhan,Qi `20; Jejjala,Mayorga Pena,Mishra `20; Larfors,Lukas,FR,Schneider `21 `22]

Massive KK states I

- One massless scalar (ψ)
- Spectrum degenerate w/ degeneracies given by irreps of CY symmetry group
- Eigenvalues (mass levels) cross in contrast (but not contradiction) to
 - No-crossing theorems in QM
 - Eigenvalue repulsion in RMT for hermitian matrices
- States with large multiplicity become heavier, states with small multiplicity become lighter

Massive KK states II

- Scalars become exponentially light
- Best fit gives $m = \lambda^{1/2} = 7.5e^{-(0.45 \pm 0.02)d}$
- First numerical check of the SDC
- Value very close to conjectured behavior $\alpha=1/\sqrt{6}$ [see Muldrow's talk] [Andriot, Cribiori, Erkinger `20; Etheredge, Heidenreich, Kayab, Qiua, Rudelius `22]
- Interesting effect at sub-Planckian distances: mass of lightest state does not change for .3 M_P

Flops and Kähler Cones

CYs related by flops

Examples 1:

- Can flop to a non-isomorphic CY on one side
- KC ends in Zariski chamber on other side
- KC ends beyond X'

CYs related by flops

Examples 1:

- Can flop to a non-isomorphic CY on one side
- KC ends in Zariski chamber on other side
- KC ends beyond X'

Example 2:

- Can flop ("reflect") to an isomorphic CY on one side
- KC ends on other side
- KC ends beyond X_1^1

[Brodie, Constantin, Lukas, FR: 2104.03325]

CYs related by flops

Examples 1:

- Can flop to a non-isomorphic CY on one side
- KC ends in Zariski chamber on other side
- KC ends beyond X'

Example 2:

- Can flop ("reflect") to an isomorphic CY on one side
- KC ends on other side
- KC ends beyond X_1^1

Example 3:

- Can flop ("reflect") to an isomorphic CY on both sides
- Repeating this gives infinitely many flops
- KC ends after infinitely many CYs

[Brodie, Constantin, Lukas, FR: 2104.03325]

Finding the reflections

▶ The matrices *M* that map between two isomorphic CYs *X* and *X'* can be constructed explicitly

$$\begin{bmatrix} \mathbb{P}^{n} & 1 & 1 & 1 & \dots & 1 & 0 & \dots & 0 \\ \vec{\mathbb{P}} & \vec{q}_{1} & \vec{q}_{2} & \dots & \vec{q}_{n+1} & \vec{q}_{n+2} & \dots & \vec{q}_{K} \end{bmatrix} \begin{bmatrix} \mathbb{P}^{n} & 2 & 1 & \dots & 1 & 0 & \dots & 0 \\ \vec{\mathbb{P}} & \vec{p}_{1} & \vec{p}_{2} & \dots & \vec{p}_{n} & \vec{p}_{n+1} & \dots & \vec{p}_{K} \end{bmatrix}$$

$$M = \begin{pmatrix} -1 & \vec{0}^{T} \\ \sum_{k=1}^{n+1} \vec{q}_{k} & 1 \end{pmatrix}$$

$$M = \begin{pmatrix} -1 & \vec{0}^{T} \\ \sum_{k=2}^{n} \vec{q}_{k} & 1 \end{pmatrix}$$

$$\begin{bmatrix} \mathbb{P}^n & 2 & 1 & \dots & 1 & 0 & \dots & 0 \\ \vec{\mathbb{P}} & \vec{p_1} & \vec{p_2} & \dots & \vec{p_n} & \vec{p_{n+1}} & \dots & \vec{p_K} \end{bmatrix}$$

$$M = \begin{pmatrix} -1 & \vec{0}^T \\ 2\vec{q_1} + \sum_{k=2}^n \vec{q_k} & 1 \end{pmatrix}$$

 They depend on the Gopakumar-Vafa invariants and the intersection numbers, e.g.

$$M = \begin{pmatrix} -1 & 0 \\ m & 1 \end{pmatrix} \qquad m = \frac{2d_{122}}{d_{222}} \qquad n_{[\mathcal{C}]} + 8n_{[2\mathcal{C}]} = 2d_{111} - 3md_{112} + m^2d_{122}$$

Some Group Properties

- For ease of exposition, let us focus on isomorphic flops along two KC boundaries
- The matrices M_1 and M_2 generate a group with presentation

$$G = \langle M_1, M_2 \mid M_1^2 = M_2^2 = 1 \rangle \sim \mathbb{Z}_2 * \mathbb{Z}_2 \sim \mathbb{Z}_2 \rtimes \mathbb{Z}_2$$

- Let us define $S = M_1$, $T = M_1 M_2$
- Then any word can be written as $w = T^n S^m$, $m \in \mathbb{Z}_2$, $n \in \mathbb{Z}$
- In particular: $T^{-n} = (T^n)^{-1}$, $ST^{-n} = T^n S$
- Boundary slopes:

$$\beta_1 = \lim_{n \to \infty} \frac{c(n)}{a(n)} = \lim_{n \to \infty} \frac{d(n)}{b(n)} = -\frac{2}{m_2 + \sqrt{\frac{m_2}{m_1}(m_1 m_2 - 4)}} \qquad \beta_2 = -\frac{2}{m_1 + \sqrt{\frac{m_1}{m_2}(m_1 m_2 - 4)}}$$

Geodesics of Picard rank 2

case	normal form $\hat{\kappa}$	$(\operatorname{cl}(\kappa),\operatorname{rk}(\varphi))$	$\operatorname{metric}\hat{G}$	$\mathcal{K}(X)$ contained in
0	x^3	(1,1)	$\frac{1}{x^2}\left(egin{array}{cc} 1 & 0 \ 0 & 0 \end{array} ight)$	{}
1	$x^{3} + y^{3}$	(1,2)	$\frac{1}{\kappa^2} \left(\begin{array}{cc} x^4 - 2xy^3 & 3x^2y^2 \\ 3x^2y^2 & y^4 - 2x^3y \end{array} \right)$	$\{x < 0, x + y > 0\}$ $\cup \{y < 0, x + y > 0\}$
2	x^2y	(2,2)	$\left(\begin{array}{cc} \frac{2}{3x^2} & 0\\ 0 & \frac{1}{3y^2} \end{array}\right)$	$\{x\neq 0,y>0\}$
3	$x^2y + xy^2$	(3,2)	$ \frac{1}{3} \left(\begin{array}{ccc} \frac{1}{x^2} + \frac{1}{(x+y)^2} & \frac{1}{(x+y)^2} \\ \frac{1}{(x+y)^2} & \frac{1}{y^2} + \frac{1}{(x+y)^2} \end{array} \right) $	$\{x > 0, y > 0\}$ $\cup \{x > 0, x + y < 0\}$ $\cup \{y > 0, x + y < 0\}$

$$x = -\sqrt[3]{\sinh^2(r_k(s))}, \qquad y = \sqrt[3]{\cosh^2(r_k(s))}, \qquad r_k(s) = \sqrt{\frac{3}{8}} \varepsilon s + k$$

$$x = ke^{\varepsilon s}, \quad y = \frac{6}{k^2} e^{-2\varepsilon s}$$

$$x = \sqrt[3]{-2 + 6\cosh(3\varepsilon s)} \sin\left(\frac{1}{3}\arccos\left(\tanh(-3\varepsilon s)\right)\right), \quad y_{\pm} = \frac{-x^2 \pm \sqrt{8x + x^4}}{2x}$$

Swampland Conjectures & Infinite Flops

- ► All CYs at ★ are the same
- The geodesic distance between two \bigstar is $\gtrsim \mathcal{O}(1)$
- By the Swampland Distance Conjecture, at each ★, a tower has come down by 1
 e-fold, but the CYs are the same! [Ooguri, Vafa `06]
- Moreover, what is the fate of the symmetry group G? Is it global? [Misner, Wheeler `57; Banks, Seiberg `10]

G is gauged (remnant of 11D diffeomorphisms) \rightarrow divide out. Then the theories at \bigstar are all identified, there is a single KC, and the shortest geodesic is 0.

[Brodie, Constantin, Lukas, FR: 2104.03325]

Kawamata Morrison Cone conjecture

- What if we had flop chains involving infinitely many non-isomorphic CYs?
 - ⇒ No gauged symmetry to save the day
- The KM cone conjecture states that the extended KC only consists of finitely many isomorphism classes, so this cannot occur if the KM is true

[Morrison `94, Kawamata `97]

Conversely, if there are infinitely many KCs (and the geodesic distance it takes to traverse each does not go to 0 rapidly), you would end up with a string theory somewhere in the bulk of moduli space with an arbitrarily light tower of states, which seems wrong

Mirror duals and modularity

Look at the instant contributions to the pre-potential

$$\mathcal{F} = \mathcal{F}_{\text{class}} + \mathcal{F}_{\text{inst}} = \mathcal{F}_{\text{class}} + \frac{1}{(2\pi i)^3} \sum_{(d_1, \dots, d_r) \in \mathbb{N}^r} n_{(d_1, \dots, d_r)} \text{Li}_3 \left(\exp\left[2\pi i \sum_{j=1}^r d_j t_j \right] \right)$$

- If two curve classes are mapped onto one another, their GV invariants agree
- Can split the sum over d_i into group orbits of G
- For specific choices ($m_1=m_2=2$), the exponentials in the polylog resum into theta functions \Rightarrow modular prepotential [work in progress]
- Interestingly, the mirror dual of the HV manifold is precisely of this type. There, its middle cohomology splits in a specific way with deep number-theoretic implications (rank 2 attractor points). [Candelas, de la Ossa, Elmi, van Straten `19; Candelas, Kuusela, McGovern `21]
- ▶ Theta-functions also arise in the 4D superpotential from ED3 branes [Naomi's talk]

Conclusions

Conclusions

- Computed massive string excitations and geodesics in CS moduli space and studied the SDC
- Constructed manifolds with infinitely many flops and their symmetry group.
 Related to GV invariants and intersection numbers
- Classified and solved geodesics equations for all Picard rank 2 manifolds
- The KM conjecture prevents a potential inconsistency with the SDC, and the SDC (under some assumptions) implies the KM conjecture
- Mirror-duals inherit interesting structure (LMHS, modularity, ...)

Conclusions

- Computed massive string excitations and geodesics in CS moduli space and studied the SDC
- Constructed manifolds with infinitely many flops and their symmetry group.
 Related to GV invariants and intersection numbers
- Classified and solved geodesics equations for all Picard rank 2 manifolds
- The KM conjecture prevents a potential inconsistency with the SDC, and the SDC (under some assumptions) implies the KM conjecture
- Mirror-duals inherit interesting structure (LMHS, modularity, ...)

Thank you!